OBJECTIVES

Ultra-efficient Radiative Cooling Nanocomposites

Cooling below the ambient using radiative cooling

- Cooling represents a major sector of power consumption
- We aim at cooling surfaces below the ambient via the passive radiative cooling
- High reflectance in the solar spectrum is needed to minimize solar heating
- High emissivity in the sky window (8-13 μm) is needed to maximize heat loss to the deep sky.

Solar-reflective infraredemissive nanocomposites

- We choose the nanocomposite which is high performance and low cost
- We engineer the material, nanoparticle size, and concentration to scatter and reflect the sunlight strongly
- The spectral reflectance, transmittance, and reflectance are measured by UV-Vis-NIR and FTIR spectrometers
- Outdoor experiments have been performed to demonstrate the below-ambient cooling and to quantify the cooling power.

KEY RESULTS AND FINDINGS:

Top: Our nanocomposites (Designs A and B) as well as benchmarks (carbon black, commercial paint, and TiO2-acrylic). Bottom: The SEM (scanning electron microscope) images of our nanocomposites (Designs A and B).

Spectrometer measurements confirm that our nanocomposites have high solar reflectance and high emissivity in the sky window.

Top: Our nanocomposites can be cooled 10 °C below the ambient during night time, and 6 °C below the ambient during noon. Bottom: Our cooling nanocomposites provide >100W/m² cooling power through 24-hour run.

Monte Carlo simulations of the photon reflectance, transmittance, and absorptance

Impact

- The first demonstration of below-ambient cooling under direct sunlight using particlematrix nanocomposites
- Our nanocomposites are ultra-efficient, low cost, and compatible with current paint manufacturing technologies.
- A full patent has been filed.

Applications

- Cool roofs of residential and industrial buildings, data centers, outdoor electronics equipment, etc
- •Cell phone skin temperature management
- Mitigate global warming!

Selected Publications

- Li, Peoples, Huang, Zhao, Qiu, and Ruan, Cell Rep. Phys. Sci. in press (2020). A *Cell* sister journal.
- Peoples, Li, Lv, Qiu, Huang, and Ruan, *Int. J. Heat Mass Trans.* **131**, 487-494 (2019)
- Huang and Ruan, *Int. J. Heat Mass Transfer* **104**, 890-896 (2017).

